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Abstract

Motivated by observations about job runtimes on the
CPlant system, we use a trace-driven microsimulator to be-
gin characterizing the performance of different classes of
allocation algorithms on jobs with different communication
patterns in space-shared parallel systems with mesh topol-
ogy. We show that relative performance varies considerably
with communication pattern. The Paging strategy using the
Hilbert space-filling curve and the Best Fit heuristic per-
formed best across several communication patterns.

1. Introduction

To increase the scalability of commodity-based super-
computers, Sandia National Laboratories is developing the
Computational Plant or Cplant [4, 27]. Although Sandia
maintains a diverse set of computing resources, the tools
for managing these resources commonly rely on schedul-
ing/queuing software such as NQS [7] or PBS [25] to deter-
mine which of the available jobs should be run next. This
decision is based on several factors, largely motivated by
fairness and policy enforcement such as the job owner’s
past use of computing resources, number of processors re-
quested, running-time estimates, waiting time, and even day
of week and time of day.

When a job is selected to run, it is passed to the allocator,
which must immediately assign it to a set of processors. On
Cplant systems, these processors are exclusively dedicated
to this job until it terminates. The allocator is a separate
module from the scheduler and has no control over it.

The quality of an allocator is ultimately judged by the
throughput of the managed system. Since job placement
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affects the system’s network contention, allocation is a ma-
jor factor in determining system performance, particularly
in commodity-based supercomputers such as Cplant, which
typically have higher communication latencies and lower
bandwidth than supercomputers with custom networks. Ex-
periments on Cplant showed that poor allocation could in-
crease the running time of a pair of high-communication
jobs by as much as a factor of two [17]. Other researchers
have shown in a variety of studies that interprocessor com-
munication can reduce throughput [2, 20, 21, 24].

Unfortunately, while it is easy to agree that some alloca-
tions are “very good” and others are “very poor”, the allo-
cations in the middle are hard to judge. Progress in this di-
rection was made by Mache and Lo [20, 21], who proposed
various metrics, including average number of communica-
tion hops between the processors of a job. This metric was
supported by the experiments of Leung et al. [16], as shown
in Figure 1, which plots running time versus the average
distance between processors assigned to a job. Each plotted
job uses 30 processors and performs a communication test
consisting of all-to-all broadcast, all-pairs ping-pong (mes-
sage sent in each direction), and ring communication. Each
of these patterns is repeated one hundred times.

Based on these experiments, it was decided to switch the
Cplant allocators from the 1-dimensional scheme described
in Section 2.1 to MC1x1, described in Section 2.3, which
explicitly tries to minimize the pairwise distance metric.
However, more recent observations on Cplant suggest that,
while all-to-all broadcast jobs seem to complete faster un-
der MC1x1 than the 1-dimensional scheme, ring communi-
cation jobs seem to complete faster under the 1-dimensional
scheme [13]. Perhaps the all-to-all broadcast dominated Le-
ung et al.’s communication test suite.

This paper discusses the results of trace-driven mi-
crosimulations attempting to determine the interaction be-
tween allocation algorithms and communication patterns.
In Section 2, we briefly survey known allocation algorithms
and describe those used in our simulations. In Section 3, we
give the details of the simulations. In Section 4, we present
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Figure 1. Relationship of pairwise distance
and running time for large jobs in test suite.

the results and then we discuss them in Section 5.

2. Allocation Algorithms

Now we briefly summarize processor allocation re-
search, paying special attention to the algorithms used in
our simulator. Initial processor-allocation algorithms allo-
cated only convex sets of processors to a job [3, 6, 18, 32].
Doing so has the potential to eliminate interjob communi-
cation contention if each job’s communication is routed en-
tirely within the set of processors assigned to that job. Un-
fortunately, requiring that jobs be allocated to convex sets of
processors reduces system utilization to levels unacceptable
for any government-audited system [14, 28].

More recent work [5, 15, 16, 19, 22, 28] allows non-
contiguous allocations, attempting to cluster processors and
minimize contention with previously-allocated jobs. Non-
contiguous allocations allow jobs to be allocated whenever
enough processors are available, but they greatly increase
the number of possible allocations that must be considered.

2.1. One-Dimensional Reduction

One of the first algorithms proposed for noncontinuous
processor allocation was Paging by Lo et al. [19]. In this
algorithm, the processors of a machine are subdivided into
2s × 2s submeshes called pages, where s is the page size.
A sorted free list of pages is maintained and incoming jobs

are assigned a prefix of the list with appropriate size. This
algorithm can result in fragmentation if some free proces-
sors cannot be used because they are contained in pages that
have been allocated to a job. To avoid fragmentation, we
consider only s = 0, making each page a single processor.

Specification of the Paging algorithm also requires giv-
ing the ordering of the pages. Lo et al. considered sev-
eral page orderings, including row-major and s-curve (see
Figure 2(a)). Leung et al. [16] independently developed an
algorithm similar to Paging, but they proposed using space-
filling or fractal curves to order the pages. These curves are
recursively defined and are known to preserve several mea-
sures of “locality” [10, 23]. Two-dimensional space-filling
curves include Hilbert curves [11] (see Figure 2(b)) and H-
indexing [26] (see Figure 2(c)). Higher dimensional space-
filling curves are discussed by Alber and Niedermeier [1].
For non-mesh machines, Leung et al. developed an integer
program to find curves with locality properties.

(a) (b) (c)

Figure 2. (a) S-curve (b) Hilbert curve (c) H-
indexing

In addition to using different page orderings, the algo-
rithm of Leung et al. differs from Paging by selecting
pages using bin-packing heuristics rather than a sorted free
list. Their adaptation of these heuristics views each maxi-
mal interval of free processors with contiguous ranks as a
partially-filled “bin”. When no bin contains enough free
processors to satisfy the incoming request, the set of pro-
cessors with the smallest range of ranks along the curve is
allocated. Otherwise, the First Fit algorithm allocates pro-
cessors to a job from the first bin that is large enough and
the Best Fit algorithm allocates processors from the bin that
will have the fewest processors remaining. Both of these
algorithms are close analogs to algorithms for bin packing
proposed by Johnson [12]. Leung et al. also considered
a variation of the more-complicated Sum-of-Squares Algo-
rithm [9, 8], but this algorithm did not seem to perform as
well in the processor allocation setting. The experiments of
Leung et al. indicate that the choice of curve is more impor-
tant than the algorithm used to select processors along the
curve, but that both choices affect machine performance.



2.2. Gen-Alg

Krumke et al. [15] consider the discrete problem of se-
lecting a subset of k points from a set of n points to min-
imize their average pairwise distance. They describe an
algorithm Gen-Alg, given in Figure 3 and prove it is a
(2−2/k)-approximation. This approximation ratio depends
only on the triangle inequality, so it holds even in non-mesh
architectures.

For each possible point p do:

1. Take the k − 1 points closest to p.

2. Compute the total pairwise distance between all k
points.

Return the set of k points with smallest pairwise dis-
tance.

Figure 3. Algorithm Gen-Alg

2.3. MC

The processor allocation algorithm proposed by Mache
et al. [22], called MC, assumes that jobs request processors
in a particular shape, such as a 4 × 6 submesh. Each free
processor evaluates the quality of an allocation centered on
itself. It does so by counting the number of free processors
within a submesh of the requested size centered on itself
and within “shells” of processors surrounding this submesh.
The processors are weighted by the shell containing them;
0 for the initial submesh, 1 for the first shell out, 2 for the
second, and so on. The sum of the weights gives the cost
of the allocation. The algorithm chooses the allocation with
lowest cost. This is illustrated in Figure 4, reproduced from
Mache et al. [22].

Allocated processor

Free processorA

Figure 4. Illustration of MC: Shells around
processor A for a 3 × 1 request.

The MC algorithm cannot be directly applied to Cplant

because its users do not request processors in a particular
shape. Thus, we consider a variant that we call MC1x1.
In this variant, shell 0 is a 1 × 1 submesh and subsequent
shells grow in the same way as in MC. The work of Krumke
et al. [15] implies that MC1x1 is a (4−4/k)-approximation
for average pairwise distance on k processors.

3. Simulation

For our simulations, we used ProcSimity [31, 29], a sim-
ulator designed to compare processor scheduling and allo-
cation algorithms. Since our focus is on allocation rather
than scheduling, we scheduled using First Come, First
Serve (FCFS) in all our simulations. ProcSimity models
communication at the flit level, allowing it to measure how
network contention affects machine throughput.

3.1. Trace

We used a trace-driven simulation. The trace consists of
all jobs submitted to the 352-node NQS partition of the In-
tel Paragon at the San Diego Supercomputer Center during
the last three months of 1996 [30]. It consisted of 6087 jobs
with the following statistical characteristics: the mean inter-
arrival time was 1301 seconds, with a coefficient of variance
of 3.7; the average job size was 14.5 nodes, with a coeffi-
cient of variance of 1.5, and with the distribution heavily
favoring sizes that are powers of two; the mean job runtime
was 3.04 hours with a coefficient of variance of 1.13.

3.2. Communication

Rather that assigning specific durations to our jobs, we
specified that each job sends one message per second of
trace run time. When these messages have all arrived, the
job terminates. We varied the message intensity by con-
tracting all job arrival times by a load factor, taking values
1, 0.8, 0.6, 0.4, and 0.2 so that effective system load in-
creases by up to a factor of 5.

In each experiment, we assume that all jobs use the same
communication pattern. While not realistic, this maximizes
the interaction between the pattern and the allocation al-
gorithm. We considered the following communication pat-
terns, repeated as necessary to meet the message quotas for
each job:

All-to-all In the all-to-all pattern, each processor sends a
message to all other processors running the same job.

N-body In the n-body pattern, the processors assigned to
a job form a virtual ring. For a job using p processors, each
processor sends a message to its successor in the ring in



each of bp/2c ring subphases (see Figure 5(a)) and then
sends a message to the processor halfway across the ring
during a single chordal subphase (see Figure 5(b)). This
pattern represents an algorithm for computing interparticle
forces: Each processor “owns” a set of particles and keeps
a copy of them at all times. Another copy migrates around
the ring during the ring subphases. Between subphases,
each processor computes the forces between the particles
it owns and migrating particles currently at that processor.
The chordal subphase accumulates all the forces acting on
each particle at its owning processor, which can then update
their positions before the next time step.

(a) (b) (c)

Figure 5. Messages sent during an N -body
calculation with 15 processors. (a) Messages
during ring subphase. (b) Messages during
chordal subphase. (c) Migration of data away
from owning node and back.

Random In the random pattern, each message goes be-
tween a random pair of processors assigned to the job.

4. Results

We performed simulations on two mesh sizes. The first,
16 × 22, was selected to closely match the size of the
machine which generated the trace. However, having di-
mensions of differing sizes potentially cause problems for
the Paging algorithms. The Hilbert and H-indexing space-
filling curves are described having a square shape where
the dimensions are a power of two. To get a curve for the
16×22 machine, we truncated a 32×32 curve to the appro-
priate size. The result is “curves” with gaps along the top
edge, as shown in Figure 6. Although the S-curve does not
become discontinuous on a non-square mesh, such a mesh
presents the choice of whether the long part of each curve
will move in the longer or shorter direction. Quick simula-
tions seemed to indicate that the short direction is better so
we used this convention. However, because of these issues
with non-square meshes, we also performed simulations on
a 16 × 16 mesh, using the same trace except for removing
3 jobs of 320 nodes each that are too large to fit the smaller
machine.

Rather than showing all the data and cluttering our
graphs, we omit the results of the Paging algorithms running
First Fit. Generally speaking, First Fit was intermediate in
performance between free list and Best Fit, though we note
some important exceptions to this in the following section.

Figure 6. Top 16×6processors in Hilbert curve
(top) and H-indexing (bot) on 16 × 22 mesh.
Arrows indicate the processor after a gap

4.1. 16× 22 Mesh

Figure 7(a) shows the results for all-to-all communica-
tion on a 16 × 22 mesh. The horizontal axis is the load
factor by which we multiplied job interarrival times. The
vertical axis is job response times in seconds. The response
time of a job is its completion time minus it arrival time,
or the total time it spent in the system. The ordering of the
algorithms varies considerably in this graph. The best al-
gorithm at high load is MC and at lower loads it is either
Hilbert with Best Fit or S-curve with Best Fit. H-indexing
with free list is consistently the worst. More generally, the
Paging algorithms perform better with a packing algorithm
than with the free list. Among the other algorithms, MC is
best, followed by Gen-Alg, and then MC1x1.

Figure 7(b) shows the results for n-body communication
on a 16 × 22 mesh. The algorithms are almost completely
ordered best to worst as follows:

1. S-curve with Best Fit,

2. Hilbert with free list,

3. H-indexing with free list,

4. S-curve with free list,
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Figure 7. Results for trace on 16 × 22 mesh for various communication patterns. (a) All-to-all (b)
N-body (c) Random

5. Hilbert with Best Fit,

6. H-indexing with Best Fit,

7. MC,

8. MC1x1, and

9. Gen-Alg.

Although Hilbert and H-indexing with free list beat Best
Fit, First Fit (not shown) ran faster than free list or Best Fit.

Figure 7(c) shows the results for random communica-
tion. Again, the ranking is muddled. Hilbert with free list is
consistently the best. H-indexing is consistently the worst,
with free list generally better than Best Fit. (As in the previ-
ous case, Hilbert and H-indexing with First Fit (not shown)
ran faster than free list and Best Fit.) MC, MC1x1, and
Gen-Alg were similar, with the order depending on load.

4.2. 16 × 16 Mesh

Figure 8(a) shows the results for all-to-all communica-
tion on a 16 × 16 mesh. The algorithms are ordered best to
worst as follows:

1. MC and Hilbert with Best Fit,

2. Gen-Alg, MC1x1, and H-indexing with Best Fit,

3. Hilbert with free list,

4. S-curve with Best Fit,

5. H-indexing with free list and S-curve with free list.

Looking for a specific shape seems to yield an advantage
to MC over MC1x1, and the 1-dimensional strategies seem
to be sensitive to the curve used; Hilbert with Best Fit is tied
for the best, but S-curve always performs poorly.

Figure 8(b) shows the results for n-body communication
on a 16×16 mesh. The algorithms are ordered best to worst
as follows:

1. Hilbert with Best Fit,

2. H-indexing with Best Fit,

3. Hilbert with freelist,

4. H-indexing with freelist,

5. S-curve, first with Best Fit and then free list,

6. MC,

7. MC1x1, and

8. Gen-Alg.

Figure 8(c) shows the results for random communication
on a 16×16 mesh. The algorithms are ordered best to worst
as follows:

1. Hilbert with Best Fit,

2. MC and H-indexing with Best Fit,

3. MC1x1, Gen-Alg, and Hilbert with freelist,
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Figure 8. Results for trace on 16 × 16 mesh for various communication patterns. (a) All-to-all (b)
N-body (c) Random

4. H-indexing with freelist,

5. S-curve with Best Fit, and

6. S-curve with freelist.

Although the specific communication pattern depends on
random choices, one might expect the random pattern to be
similar to all-to-all since all pairs are equally likely to com-
municate. Surprisingly, while Hilbert with Best Fit does
well in both and S-curve does poorly, MC does better for
all-to-all and H-indexing does worse.

4.3. Correlation to Alternate Metrics

We also used our simulations to test the correlation be-
tween job running time and the average distance between
its processors. On the square mesh running n-body commu-
nication, we considered instances of the largest jobs (128
processors) sending between 39,900 and 44,000 messages.
This range gave us 24 jobs in each simulation sending ap-
proximately the same number of messages. As shown in
Figure 9, there is no clear relationship between pairwise dis-
tance and running time for these jobs. There is however a
reasonably tight relationship, shown in Figure 10, between
running time and average message distance, the average dis-
tance traveled the messages of a job. Plotting running time
against total message distance gives a similar graph.

Another metric to consider is how often jobs are allo-
cated to contiguous processors. More formally, we say that
a set of processors assigned to a job form a component if

there is a rectilinear path between any pair of them through
processors assigned to that job. A job is allocated contigu-
ously if all its processors form a single component. (Note
that such a job may still interfere with others since mes-
sages use x-y routing rather than arbitrary paths.) Figure 11
shows the percentage of jobs allocated contiguously and the
average number of components into which jobs were allo-
cated. Observe that the curve-based strategies allocate into
fewer components than the others. Unfortunately, neither of
the metrics seems to capture the behavior observed in sim-
ulations.

5. Discussion

Although our experiments are too few to fully under-
stand the interaction between the allocation algorithm and
the jobs communication patterns, we do see some trends.
The most dramatic difference occurs for MC, which is
among the best for all-to-all, but gives relatively poor per-
formance for n-body. S-curve and H-indexing are some-
what the reverse, being among the worst for all-to-all and
better for n-body. The ideal would be an algorithm that per-
forms well for all communication patterns. The closest to an
overall best algorithm is Hilbert with Best Fit. It is among
the best for all patterns on the 16×16 mesh and the all-to-all
pattern on the 16 × 22 mesh.

There are differences between the results on the 16 ×
16 mesh (Figure 8) and the 16 × 22 mesh (Figure 7). The
discontinuities in the Hilbert and H-indexing curves may
explain why only the S-curve is always improved by the
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Figure 9. Relationship of processor pairwise
distance and running time for n-body commu-
nication.

packing heuristics and why the S-curve does relatively well
on the 16×22 mesh. On the other hand, Hilbert with free list
performs very well, despite having the largest discontinuity.

Beyond these interactions, our experiments support a
number of other observations. As observed by Leung et
al. [16], the choice of curve seems have the dominant effect
on performance for Paging algorithms. Generally, using
sorted free list for a curve gives the worst performance and
using Best Fit gives the best. In addition, MC consistently
outperforms MC1x1. This is not surprising since users re-
quest an allocation with dimensions that can fit the job, bi-
asing MC toward rectangular allocations, lessening interjob
contention. We expect the superiority of MC to MC1x1 to
be even greater for real programs since users are likely to
request shapes particularly good for their communication
pattern, as in the case of a simulation where the user knows
the shape of the object being simulated. Although this ob-
servation is not applicable to Cplant since its software does
not get a user-supplied job shape, it is an argument for de-
signing future systems to gather shape information from the
user.

More experiments of this type need to be performed.
Since allocation algorithms are an important factor in de-
termining machine throughput, they need to be evaluated
with a variety of communication patterns and using differ-
ent traces. Obviously, the ideal it to find a general purpose
allocation algorithm that works reasonably well for all types
of problems, but a strategy to harness the strengths of dif-
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ferent algorithms would also be useful.
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